Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 961: 49

Answer

$$\left\| {\nabla z\left( {1,1} \right)} \right\| = \frac{1}{2}$$

Work Step by Step

$$\eqalign{ & z = \frac{y}{{{x^2} + {y^2}}},{\text{ point }}\left( {1,1} \right) \cr & {\text{Find the partial derivatives }}{z_x}{\text{ and }}{z_y} \cr & {z_x} = \frac{\partial }{{\partial x}}\left[ {\frac{y}{{{x^2} + {y^2}}}} \right] \cr & {z_x} = - \frac{{2xy}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} \cr & and \cr & {z_y} = \frac{\partial }{{\partial y}}\left[ {\frac{y}{{{x^2} + {y^2}}}} \right] \cr & {z_y} = \frac{{\left( {{x^2} + {y^2}} \right) - y\left( {2y} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} \cr & {z_y} = \frac{{{x^2} - {y^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} \cr & {\text{Calculate }}\nabla z \cr & \nabla z = {z_x}{\bf{i}} + {z_y}{\bf{j}} \cr & \nabla z = - \frac{{2xy}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}{\bf{i}} - \frac{{{x^2} - {y^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}{\bf{j}} \cr & {\text{At the given point the gradient is}} \cr & \nabla z\left( {1,1} \right) = - \frac{2}{{{{\left( {1 + 1} \right)}^2}}}{\bf{i}} - \frac{{1 - 1}}{{{{\left( {1 + 1} \right)}^2}}}{\bf{j}} \cr & \nabla z\left( {1,1} \right) = - \frac{1}{2}{\bf{i}} \cr & {\text{The maximum value of }}z\left( {x,y} \right){\text{ is }}\left\| {z\left( {x,y} \right)} \right\| \cr & \left\| {\nabla z\left( {1,1} \right)} \right\| = \left\| { - \frac{1}{2}{\bf{i}}} \right\| \cr & \left\| {\nabla z\left( {1,1} \right)} \right\| = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.