Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.4 Exercises - Page 905: 6

Answer

\begin{align} d z=\left(e^{x^{2}+y^{2}}+e^{-x^{2}-y^{2}}\right)(x d x+y d y) \end{align}

Work Step by Step

Given $$ z=\frac{1}{2}\left(e^{x^{2}+y^{2}}-e^{-x^{2}-y^{2}}\right)$$ Since $$dz=\frac{\partial z}{\partial x} dx+\frac{\partial z}{\partial y} dy ,$$ $$\frac{\partial z}{\partial x} =\frac{1}{2}\left((2x )e^{x^{2}+y^{2}}-(-2x)e^{-x^{2}-y^{2}}\right)=x\left(e^{x^{2}+y^{2}}+e^{-x^{2}-y^{2}}\right) ,$$ and $$\frac{\partial z}{\partial y} =\frac{1}{2}\left((2y )e^{x^{2}+y^{2}}-(-2y)e^{-x^{2}-y^{2}}\right)=y\left(e^{x^{2}+y^{2}}+e^{-x^{2}-y^{2}}\right)$$ then we get \begin{align} d z&=x\left(e^{x^{2}+y^{2}}+e^{-x^{2}-y^{2}}\right) d x+y\left(e^{x^{2}+y^{2}}+e^{-x^{2}-y^{2}}\right) dy \\ &=\left(e^{x^{2}+y^{2}}+e^{-x^{2}-y^{2}}\right)(x d x+y d y) \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.