Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.4 Exercises - Page 905: 20

Answer

$$\eqalign{ & f\left( {x,y} \right) = \sin \left( {x + y} \right) \cr & dz = 0 \cr} $$

Work Step by Step

$$\eqalign{ & \sin \left[ {{{\left( {1.05} \right)}^2} + {{\left( {0.95} \right)}^2}} \right] - \sin \left( {{1^2} + {1^2}} \right) \cr & {\text{Rewrite the expression}} \cr & = \sin \left[ {{{\left( {1 + 0.05} \right)}^2} + {{\left( {1 - 0.05} \right)}^2}} \right] - \sin \left( {{1^2} + {1^2}} \right) \cr & = \sin \left[ {\overbrace {{{\left( {1 + 0.05} \right)}^2}}^{{{\left( {x + \Delta x} \right)}^2}} + \overbrace {{{\left( {1 - 0.05} \right)}^2}}^{{{\left( {y + \Delta y} \right)}^2}}} \right] - \overbrace {\sin \left( {{1^2} + {1^2}} \right)}^{\sin \left( {x + y} \right)} \cr & {\text{Let the function }} \cr & z = f\left( {x,y} \right) = \sin \left( {x + y} \right),{\text{ with }}x = 1{\text{ and }}y = 1,{\text{ }} \cr & \Delta x = 0.05{\text{ and }}\Delta y = - 0.05 \cr & {\text{Therefore, the total differential is }} \cr & dz = \frac{\partial }{{\partial x}}\left[ {\sin \left( {x + y} \right)} \right]dx + \frac{\partial }{{\partial y}}\left[ {\sin \left( {x + y} \right)} \right]dy \cr & dz = \cos \left( {x + y} \right)dx + \cos \left( {x + y} \right)dy \cr & {\text{With }}dx = \Delta x{\text{ and }}dy = \Delta y \cr & dz = \cos \left( {1 + 1} \right)\left( {0.05} \right) + \cos \left( {1 + 1} \right)\left( { - 0.05} \right) \cr & dz = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.