Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.4 Exercises - Page 905: 18

Answer

$$\eqalign{ & f\left( {x,y} \right) = \frac{{1 - {x^2}}}{{{y^2}}} \cr & dz = - 0.012037 \cr} $$

Work Step by Step

$$\eqalign{ & \frac{{1 - {{\left( {3.05} \right)}^2}}}{{{{\left( {5.95} \right)}^2}}} - \frac{{1 - {3^2}}}{{{6^2}}} \cr & {\text{Rewrite the expression}} \cr & = \frac{{1 - {{\left( {3 + 0.05} \right)}^2}}}{{{{\left( {6 - 0.05} \right)}^2}}} - \frac{{1 - {3^2}}}{{{6^2}}} \cr & z = \frac{{\overbrace {1 - {{\left( {3 + 0.05} \right)}^2}}^{1 - \left( {x + \Delta x} \right)}}}{{\underbrace {{{\left( {6 - 0.05} \right)}^2}}_{\left( {y + \Delta y} \right)}}} - \overbrace {\frac{{1 - {3^2}}}{{\underbrace {{6^2}}_{{y^2}}}}}^{1 - {x^2}} \cr & {\text{Let the function }} \cr & z = f\left( {x,y} \right) = \frac{{1 - {x^2}}}{{{y^2}}},{\text{ with }}x = 3{\text{ and }}y = 6,{\text{ }} \cr & \Delta x = 0.05{\text{ and }}\Delta y = - 0.05 \cr & {\text{Therefore, the total differential is }} \cr & dz = \frac{\partial }{{\partial x}}\left[ {\frac{{1 - {x^2}}}{{{y^2}}}} \right]dx + \frac{\partial }{{\partial y}}\left[ {\frac{{1 - {x^2}}}{{{y^2}}}} \right]dy \cr & dz = - \frac{{2x}}{{{y^2}}}dx + \left( { - \frac{{2\left( {1 - {x^2}} \right)}}{{{y^3}}}} \right)dy \cr & dz = - \frac{{2x}}{{{y^2}}}dx - \frac{{2\left( {1 - {x^2}} \right)}}{{{y^3}}}dy \cr & {\text{With }}dx = \Delta x{\text{ and }}dy = \Delta y \cr & dz = - \frac{{2\left( 3 \right)}}{{{{\left( 6 \right)}^2}}}\left( {0.05} \right) - \frac{{2\left( {1 - {{\left( 3 \right)}^2}} \right)}}{{{{\left( 6 \right)}^3}}}\left( { - 0.05} \right) \cr & dz = - 0.012037 \cr & \cr & f\left( {x,y} \right) = \frac{{1 - {x^2}}}{{{y^2}}} \cr & dz = - 0.012037 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.