Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.4 Exercises - Page 905: 14

Answer

\begin{aligned} \text { (a) } f(2,1) & =0.5 \\ f(2.1,1.05) & =0.5&\\ \Delta z&= 0\\ \text {( b) } dz &=0\end{aligned}

Work Step by Step

Given $$f(x, y)=\frac{y}{x}$$ so, we have \begin{aligned} \text { (a) } f(2,1) &=\frac{1}{2}=0.5\\ f(2.1,1.05) &=\frac{1.05}{2.1}=0.5\\ \Delta z &=f(2.1,1.05)-f(2,1)\\ &=0.5-0.5=0 \\ \text {( b) } \text { since }d z &=\frac{\partial f}{\partial x} dx+\frac{\partial f}{\partial y} dy,\\ &\frac{\partial f}{\partial x}= -\frac{y}{x^2}=-\frac{1}{2^2}=-0.25,\\ &\frac{\partial f}{\partial y} =\frac{1}{x}=-\frac{1}{2}=0.5,\\ & dx\approx\Delta x=2.1-2=0.1 \ \ \text{and} \\& dy\approx\Delta y=1.05-1=0.05 \\& \text{So we get},\\ &dz=-0.25 d x+0.5 d y\\ &\ \ \ \ =-0.25(0.1)+0.5(0.05) \\ &\ \ \ \ =-0.025+0.025=0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.