Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.4 Exercises - Page 905: 4

Answer

\begin{aligned} d w &=\frac{1}{z-3 y} d x+\frac{3 x+z}{(z-3 y)^{2}} d y-\frac{x+y}{(z-3 y)^{2}} d z \end{aligned}

Work Step by Step

Given $$ w =\frac{x+y}{z-3 y}$$ Since $$dw=\frac{\partial w}{\partial x} dx+\frac{\partial w}{\partial y} dy+\frac{\partial w}{\partial z} dz,$$ $$\frac{\partial w}{\partial x} =\frac{(1)(z-3 y)-0}{(z-3 y)^2} =\frac{1}{(z-3 y)} ,$$ $$\frac{\partial w}{\partial y} =\frac{(1)(z-3 y)-(-3)(x+y)}{(z-3 y)^2} =\frac{ z-3 y +3x+3y)}{(z-3 y)^2} \\=\frac{ (z +3x )}{(z-3 y)^2}$$ and $$\frac{\partial w}{\partial z} = \frac{0-(1)(x+y)}{(z-3 y)^2} =-\frac{(x+y)}{(z-3 y)^2} $$ then we get \begin{aligned} d w &=\frac{1}{z-3 y} d x+\frac{3 x+z}{(z-3 y)^{2}} d y-\frac{x+y}{(z-3 y)^{2}} d z \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.