Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.4 Exercises - Page 905: 15

Answer

\begin{aligned} \text { (a) } f(2,1) & =7.3891 \\ f(2.1,1.05) & =8.5745 \\ \Delta z&= 1.1854 \\ \text {( b) } dz &=1.108365\end{aligned}

Work Step by Step

Given $$f(x, y)=y e^x$$ so, we have \begin{aligned} &\text { (a) } f(2,1) = e^2 =7.3891 \\ f(2.1,1.05) &=1.05 e^{2.1} =8.5745 \\ \Delta z &=f(2.1,1.05)-f(2,1)\\ &= 8.5745 - 7.3891 =1.1854 \\ \text {( b) } \text { since }d z &=\frac{\partial f}{\partial x} dx+\frac{\partial f}{\partial y} dy,\\ &\frac{\partial f}{\partial x}= y e^x = e^2=7.3891,\\ &\frac{\partial f}{\partial y} = e^x =e^2=7.3891,\\ & dx\approx\Delta x=2.1-2=0.1 \ \text{and} \\ & dy\approx\Delta y=1.05-1=0.05 \\ & \text{So we get},\\ &dz=e^2 d x+e^2 d y\\ & \ \ \ \ =7.3891 (0.1)+ 7.3891 (0.05) \\ &\ \ \ \ = 0.73891+0.369455\\ & \ \ \ \ =1.108365\end{aligned}  
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.