Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 896: 61

Answer

$$\frac{\partial f(1,-1,-1)}{\partial x}=1$$ $$\frac{\partial f(1,-1,-1)}{\partial y}=1$$ $$\frac{\partial f(1,-1,-1)}{\partial z}=1$$

Work Step by Step

The partial derivative with respect to $x$ is: $$\frac{\partial f(x,y,z)}{\partial x}=\frac{\partial }{\partial x}\left(\frac{x}{yz}\right)=\frac{1}{yz}\frac{\partial }{\partial x}(x)=\frac{1}{yz}\cdot1=\frac{1}{yz}$$ $y$ and $z$ are treated as a constant. The partial derivative with respect to $y$ is: $$\frac{\partial f(x,y,z)}{\partial y}=\frac{\partial }{\partial y}\left(\frac{x}{yz}\right)=\frac{x}{z}\frac{\partial }{\partial y}\left(\frac{1}{y}\right)=\frac{x}{z}\cdot\frac{-1}{y^2}=-\frac{x}{y^2z}$$ $x$ and $z$ are treated as a constant. The partial derivative with respect to $z$ is: $$\frac{\partial f(x,y,z)}{\partial z}=\frac{\partial }{\partial z}\left(\frac{x}{yz}\right)=\frac{x}{y}\frac{\partial }{\partial z}\left(\frac{1}{z}\right)=\frac{x}{y}\cdot\frac{-1}{z^2}=-\frac{x}{yz^2}$$ $x$ and $y$ are treated as a constant. Now we will evaluate these partial derivatives in the given point $(x,y,z)=(1,-1,-1)$: $$\frac{\partial f(1,-1,-1)}{\partial x}=\left.\frac{1}{yz}\right|_{(x,y,z)=(1,-1,-1)}=\frac{1}{-1\cdot(-1)}=1$$ $$\frac{\partial f(1,-1,-1)}{\partial y}=\left.-\frac{x}{y^2z}\right|_{(x,y,z)=(1,-1,-1)}=-\frac{1}{(-1)^2\cdot(-1)}=1$$ $$\frac{\partial f(1,-1,-1)}{\partial z}=\left.-\frac{x}{yz^2}\right|_{(x,y,z)=(1,-1,-1)}=-\frac{1}{-1\cdot(-1)^2}=1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.