Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 896: 39

Answer

$${f_x}\left( {x,y} \right) = 3{\text{ and }}{f_y}\left( {x,y} \right) = 2$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = 3x + 2y \cr & {\text{Differentiate by using the limit definition}} \cr & {f_x}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h,y} \right) - f\left( {x,y} \right)}}{h} \cr & {f_x}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{3\left( {x + h} \right) + 2y - \left( {3x + 2y} \right)}}{h} \cr & {f_x}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{3x + 3h + 2y - 3x - 2y}}{h} \cr & {f_x}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{3h}}{h} \cr & {f_x}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \left( 3 \right) \cr & {\text{Evaluate the limit}} \cr & {f_x}\left( {x,y} \right) = 3 \cr & \cr & {f_y}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x,y + h} \right) - f\left( {x,y} \right)}}{h} \cr & {f_y}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{3x + 2\left( {y + h} \right) - \left( {3x + 2y} \right)}}{h} \cr & {f_y}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{3x + 2y + 2h - 3x - 2y}}{h} \cr & {f_y}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{2h}}{h} \cr & {f_y}\left( {x,y} \right) = \mathop {\lim }\limits_{h \to 0} 2 \cr & {\text{Evaluate the limit}} \cr & {f_y}\left( {x,y} \right) = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.