Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.1 Exercises - Page 822: 73

Answer

$${\bf{r}}\left( t \right){\text{ is continuous on the interval }}\left( { - \frac{\pi }{2} + n\pi ,\frac{\pi }{2} + n\pi } \right)$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left\langle {{e^{ - t}},{t^2},\tan t} \right\rangle \cr & {\text{Let the vector function }}{\bf{r}}\left( t \right) = f\left( t \right){\bf{i}} + g\left( t \right){\bf{j}} + h\left( t \right){\bf{k}} \cr & {\text{The component functions are:}} \cr & f\left( t \right) = {e^{ - t}},{\text{ Is continuous for all real numbers: }}\left( { - \infty ,\infty } \right) \cr & g\left( t \right) = {t^2},{\text{ Is continuous for all real numbers: }}\left( { - \infty ,\infty } \right) \cr & h\left( t \right) = \tan t,{\text{ Is not continuous for }}\left\{ {\frac{\pi }{2} + n\pi } \right\},{\text{ }}n{\text{ integer}} \cr & {\text{Therefore,}} \cr & {\bf{r}}\left( t \right){\text{ is continuous on the interval }}\left( { - \frac{\pi }{2} + n\pi ,\frac{\pi }{2} + n\pi } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.