Answer
$$\lim _{t \rightarrow \pi}(t \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k})=\pi \mathbf{i}-\mathbf{j}$$
Work Step by Step
Given $$\lim _{t \rightarrow \pi}(t \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k})$$
So, we get
\begin{align}
\lim _{t \rightarrow \pi}(t \mathbf{i}+\cos \pi \mathbf{j}+\sin \pi \mathbf{k})&=(\pi \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k})\\
&=\pi \mathbf{i}-\mathbf{j}
\end{align}