Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.1 Exercises - Page 822: 65

Answer

\begin{align} \lim _{t \rightarrow 0}\left[t^{2} \mathbf{i}+3 t \mathbf{j}+\frac{1-\cos t}{t} \mathbf{k}\right]=0 \end{align}

Work Step by Step

Given $$\lim _{t \rightarrow 0}\left[t^{2} \mathbf{i}+3 t \mathbf{j}+\frac{1-\cos t}{t} \mathbf{k}\right]=0$$ Since \begin{align} \lim _{t \rightarrow 0} \frac{1-\cos t}{t} = \lim _{t \rightarrow 0} \frac{\sin t}{1}=\sin 0=0 \quad \text{ (L'Hôpital's Rule)} \end{align} So, we get \begin{align} L&=\lim _{t \rightarrow 0}\left[t^{2} \mathbf{i}+3 t \mathbf{j}+\frac{1-\cos t}{t} \mathbf{k}\right]\\ &= \lim _{t \rightarrow 0} t^{2} \mathbf{i}+\lim _{t \rightarrow 0}3 t \mathbf{j}+\lim _{t \rightarrow 0}\frac{1-\cos t}{t} \mathbf{k} \\ &= 0 \mathbf{i}+0 \mathbf{j}+0\mathbf{k}=0 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.