Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.1 Exercises - Page 822: 72

Answer

$${\bf{r}}\left( t \right){\text{ is continuous on the interval }}\left( {0,\infty } \right)$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 2{e^{ - t}}{\bf{i}} + {e^{ - t}}{\bf{j}} + \ln \left( {t - 1} \right){\bf{k}} \cr & {\text{Let the vector function be }}{\bf{r}}\left( t \right) = f\left( t \right){\bf{i}} + g\left( t \right){\bf{j}} + h\left( t \right){\bf{k}} \cr & {\text{The component functions are:}} \cr & f\left( t \right) = 2{e^{ - t}},{\text{ Is continuous for all real numbers: }}\left( { - \infty ,\infty } \right) \cr & g\left( t \right) = {e^{ - t}},{\text{ Is continuous for all real numbers: }}\left( { - \infty ,\infty } \right) \cr & h\left( t \right) = \ln \left( {t - 1} \right),{\text{ Is continuous for }}t - 1 > 0 \to \left( {0,\infty } \right) \cr & {\text{Therefore,}} \cr & {\bf{r}}\left( t \right){\text{ is continuous on the interval }}\left( {0,\infty } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.