Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.1 Exercises - Page 822: 67

Answer

$$\lim _{t \rightarrow 0}\left[e^{t} \mathbf{i}+\frac{\sin t}{t} \mathbf{j}+e^{-t} \mathbf{k}\right]=\mathbf{i}+\mathbf{j}+\mathbf{k}$$

Work Step by Step

Given $$\lim _{t \rightarrow 0}\left[e^{t} \mathbf{i}+\frac{\sin t}{t} \mathbf{j}+e^{-t} \mathbf{k}\right]$$ Since \begin{align} &\lim _{t \rightarrow 0} e^t =1\\ &\lim _{t \rightarrow 0} e^{-t} =1\\ &\lim _{t \rightarrow 0} \frac{\sin t}{t} =\lim _{t \rightarrow 1} \frac{ \cos t}{1} =\cos 0=1\ \quad (\text{L'Hôpital Rule})\\ \end{align} So, we get \begin{align} L&=\lim _{t \rightarrow 0}\left[e^{t} \mathbf{i}+\frac{\sin t}{t} \mathbf{j}+e^{-t} \mathbf{k}\right]\\ &=\lim _{t \rightarrow 0} e^{t} \mathbf{i}+\lim _{t \rightarrow 0}\frac{\sin t}{t} \mathbf{j}+\lim _{t \rightarrow 0}e^{-t} \mathbf{k} \\ &=\mathbf{i}+\mathbf{j}+\mathbf{k} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.