Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.3 Exercises - Page 711: 4

Answer

$\frac{dy}{dx} = \frac{1}{4}e^{\frac{-3θ}{2}}$

Work Step by Step

1. Find $\frac{dy}{d θ }$: $y = e^{-\frac{θ}{2}}$ **$ u = -\frac{θ}{2} $ **$du = -\frac{1}{2}dθ$ $y = e^u$ $dy = (e^u)du$ $dy = e^{-\frac{θ}{2}} * (-1/2)d θ $ $dy/d θ = \frac{e^{-\frac{θ}{2}}}{2}$ 2. Find $\frac{dx}{d θ }$: $x= 2e^θ $ $dx = 2(e^θ)dθ$ $\frac{dx}{d θ } = 2e^θ $ 3. Using the expression: $\frac{dy}{dx} = \frac{dy/d θ }{dx/d θ }$, find the derivative: $\frac{dy}{dx} = \frac{\frac{e^{-\frac{θ}{2}}}{2}}{2e^θ} = \frac{e^{-\frac{θ}{2}}}{4e^θ} = \frac{1}{4}e^{\frac{-3θ}{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.