Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.3 Exercises - Page 711: 2

Answer

$\frac{dy}{dx} = -3\sqrt[3] {t^2}$

Work Step by Step

1. Find $\frac{dy}{dt}$: $y = 4 - t$ $dy = (0 - 1)dt$ $dy/dt = -1$ 2. Find $\frac{dx}{dt}$: $x= \sqrt[3] t = t^{1/3}$ $dx = (\frac{1}{3})t^{(\frac{1}{3}-1)}dt = \frac{t^{-\frac{2}{3}}}{3}dt = \frac{1}{3t^{\frac{2}{3}}}dt = \frac{1}{3\sqrt[3] {t^2}}dt$ $\frac{dx}{dt} = \frac{1}{3\sqrt[3] {t^2}}$ 3. Using the expression: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$, find the derivative: $\frac{dy}{dx} = \frac{-1}{\frac{1}{3\sqrt[3] {t^2}}} = -3\sqrt[3] {t^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.