Answer
$$\eqalign{
& {\text{At }}t = 0:{\text{ }}y = 1 \cr
& {\text{At }}t = \pi :{\text{ }}y = 3x - 5 \cr} $$
Work Step by Step
$$\eqalign{
& x = {t^2} - t,{\text{ }}y = {t^3} - 3t - 1 \cr
& {\text{The graph crosses itself at the point }}\left( {2,1} \right) \cr
& {\text{At the point }}\left( {2,1} \right) \cr
& {\text{For }}x = {t^2} - t \cr
& 2 = {t^2} - t \cr
& {t^2} - t - 2 = 0 \cr
& \left( {t - 2} \right)\left( {t + 1} \right) \cr
& t = 2,{\text{ }}t = - 1 \cr
& {\text{For }}y = {t^3} - 3t - 1 \cr
& 1 = {t^3} - 3t - 1 \cr
& t = 2,{\text{ }}t = - 1 \cr
& {\text{At the point }}\left( {2,1} \right){\text{ we have }}t = 2,{\text{ }}t = - 1 \cr
& \cr
& {\text{By theorem 10}}{\text{.7}}{\text{ the slope is}} \cr
& \frac{{dy}}{{dx}} = \frac{{dy/dt}}{{dx/dt}},{\text{ }}dx/dt \ne 0,{\text{ for this exercise consider }}t = \theta \cr
& \frac{{dy}}{{dx}} = \frac{{\frac{d}{{dt}}\left[ {{t^3} - 3t - 1} \right]}}{{\frac{d}{{dt}}\left[ {{t^2} - t} \right]}} \cr
& \frac{{dy}}{{dx}} = \frac{{3{t^2} - 3}}{{2t - 1}} \cr
& \cr
& {\text{*For }}t = - 1 \cr
& {\text{Calculate the tangent line at the point }}\left( {2,1} \right) \cr
& {\text{Evaluate at }}\frac{{dy}}{{dt}}{\text{ }}t = - 1 \cr
& {\left. {\frac{{dy}}{{dx}}} \right|_{t = - 1}} = \frac{{3{{\left( { - 1} \right)}^2} - 3}}{{2\left( { - 1} \right)1}} = 0 \cr
& y - 1 = 0\left( {x - 2} \right) \cr
& y = 1 \cr
& \cr
& {\text{*For }}t = 2 \cr
& {\text{Calculate the tangent line at the point }}\left( {2,1} \right) \cr
& {\text{Evaluate at }}\frac{{dy}}{{dt}}{\text{ }}t = 2 \cr
& {\left. {\frac{{dy}}{{dx}}} \right|_{t = 2}} = \frac{{3{{\left( 2 \right)}^2} - 3}}{{2\left( 2 \right)1}} = 3 \cr
& y - 1 = 3\left( {x - 2} \right) \cr
& y = 3x - 6 + 1 \cr
& y = 3x - 5 \cr
& \cr
& {\text{At }}t = 0:{\text{ }}y = 1 \cr
& {\text{At }}t = \pi :{\text{ }}y = 3x - 5 \cr} $$