Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.3 Exercises - Page 711: 3

Answer

$\frac{dy}{dx} = - 1$

Work Step by Step

1. Find $\frac{dy}{d θ }$: $y = cos^2θ$ **$ u = cos θ $ **$du = -sin θ dθ$ $y = u^2$ $dy = (2u)du$ $dy = 2cos θ * (-sin θ)d θ $ $dy/d θ = -2cos θ sin θ $ 2. Find $\frac{dx}{d θ }$: $x= sin^2 θ $ **$u = sin θ $ **$du = cos θ d θ $ $x = u^2$ $dx = (2u)du$ $dx = 2sin θ *(cos θ )d θ $ $\frac{dx}{d θ } = 2sin θ cos θ $ 3. Using the expression: $\frac{dy}{dx} = \frac{dy/d θ }{dx/d θ }$, find the derivative: $\frac{dy}{dx} = \frac{-2cos θ sin θ }{2sin θcos θ } = - 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.