Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - Chapter 7 Review Exercises - Page 558: 47

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \int_0^{ + \infty } {{e^{ - x}}} dx \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_a^{ + \infty } {f\left( x \right)} dx = \mathop {\lim }\limits_{b \to + \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \,\,\,\int_0^{ + \infty } {{e^{ - x}}} dx = \mathop {\lim }\limits_{b \to + \infty } \int_0^b {{e^{ - x}}} dx \cr & {\text{Integrate}} \cr & = \mathop {\lim }\limits_{b \to + \infty } \left[ { - {e^{ - x}}} \right]_0^b \cr & = - \mathop {\lim }\limits_{b \to + \infty } \left[ {{e^{ - x}}} \right]_0^b \cr & = - \mathop {\lim }\limits_{b \to + \infty } \left( {{e^{ - b}} - {e^0}} \right) \cr & = - \mathop {\lim }\limits_{b \to + \infty } \left( {{e^{ - b}} - 1} \right) \cr & \cr & {\text{calculate the limit when }}b \to + \infty \cr & = - \left( {{e^{ - \infty }} - 1} \right) \cr & {\text{simplifying}} \cr & = - \left( {0 - 1} \right) \cr & = 1 \cr & {\text{then}}{\text{,}} \cr & {\text{The integral converges to }}1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.