Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - Chapter 7 Review Exercises - Page 558: 40

Answer

$$\frac{3}{2}\ln \left( {2 + {x^2}} \right) - \frac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\frac{x}{{\sqrt 2 }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{3x - 1}}{{2 + {x^2}}}} dx \cr & {\text{write in terms of }}u.{\text{ let }}u = x,\,\,\,du = dx,\, \cr & \int {\frac{{3x - 1}}{{2 + {x^2}}}} dx = \int {\frac{{3u - 1}}{{2 + {u^2}}}} du \cr & = \int {\frac{{3u - 1}}{{2 + {u^2}}}} du \cr & = \int {\frac{{3u - 1}}{{{{\left( {\sqrt 2 } \right)}^2} + {u^2}}}} du \cr & \cr & {\text{Use the Endpaper Integral Table to evaluate the integral by the formula 71}} \cr & \left( {71} \right)\int {\frac{{bu + c}}{{{a^2} + {u^2}}}} du = \frac{b}{2}\ln \left( {{a^2} + {u^2}} \right) + \frac{c}{a}{\tan ^{ - 1}}\frac{u}{a} + C \cr & {\text{with }}a = \sqrt 2 ,\,\,\,b = 3{\text{ and }}c = - 1 \cr & \int {\frac{{3u - 1}}{{2 + {u^2}}}} du = \frac{3}{2}\ln \left( {{{\left( {\sqrt 2 } \right)}^2} + {u^2}} \right) + \frac{{ - 1}}{{\sqrt 2 }}{\tan ^{ - 1}}\frac{u}{{\sqrt 2 }} + C \cr & = \frac{3}{2}\ln \left( {2 + {u^2}} \right) - \frac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\frac{u}{{\sqrt 2 }} + C \cr & \cr & {\text{write in terms of }}x,{\text{ replace }}x{\text{ for }}u \cr & = \frac{3}{2}\ln \left( {2 + {x^2}} \right) - \frac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\frac{x}{{\sqrt 2 }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.