Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - Chapter 7 Review Exercises - Page 558: 36

Answer

$$ - x{e^{ - x}} - 2{x^2}{e^{ - x}} - 4{e^{ - x}}\left( {x + 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\left( {{x^3} - {x^2}} \right){e^{ - x}}} dx \cr & {\text{use the distributive property}} \cr & = \int {{x^3}{e^{ - x}}} dx - \int {{x^2}{e^{ - x}}} dx \cr & = - \int {{x^3}{e^{ - x}}} \left( { - 1} \right)dx + \int {{x^2}{e^{ - x}}\left( { - 1} \right)} dx \cr & {\text{let }}u = - x,\,\,\,du = \left( { - 1} \right)dx \cr & = \int {{u^3}{e^u}} du + \int {{u^2}{e^u}} du \cr & \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By the formula 52}} \cr & \left( {52} \right):\,\,\,\,\,\int {{u^n}{e^u}} du = {u^n}{e^u} - n\int {{u^{n - 1}}{e^u}du} \cr & = {u^3}{e^u} - 3\int {{u^{3 - 1}}{e^u}du} + {u^2}{e^u} - 2\int {{u^{2 - 1}}{e^u}du} \cr & = {u^3}{e^u} - 3\int {{u^2}{e^u}du} + {u^2}{e^u} - 2\int {u{e^u}du} \cr & = {u^3}{e^u} - 3\left( {{u^2}{e^u} - 2\int {u{e^u}du} } \right) + {u^2}{e^u} - 2\int {u{e^u}du} \cr & = {u^3}{e^u} - 3{u^2}{e^u} + 6\int {u{e^u}du} + {u^2}{e^u} - 2\int {u{e^u}du} \cr & = {u^3}{e^u} - 2{u^2}{e^u} + 4\int {u{e^u}du} \cr & {\text{By the tables use the formula }}\int {u{e^u}du} = {e^u}\left( {u - 1} \right) + C \cr & = {u^3}{e^u} - 2{u^2}{e^u} + 4{e^u}\left( {u - 1} \right) + C \cr & \cr & {\text{Write in terms of }}x{\text{ replace }} - x{\text{ for }}u \cr & = {\left( { - x} \right)^3}{e^{ - x}} - 2{\left( { - x} \right)^2}{e^{ - x}} + 4{e^{ - x}}\left( { - x - 1} \right) + C \cr & = - x{e^{ - x}} - 2{x^2}{e^{ - x}} - 4{e^{ - x}}\left( {x + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.