Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - Chapter 7 Review Exercises - Page 558: 37

Answer

$$\frac{{2{x^2} - \left( {1/2} \right)x - 3/4}}{6}\sqrt {x - {x^2}} + \frac{1}{{16}}{\sin ^{ - 1}}\left( {2x - 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {x\sqrt {x - {x^2}} } dx \cr & {\text{write in terms of }}u.{\text{ let }}u = x,\,\,\,du = dx \cr & = \int {u\sqrt {u - {u^2}} } du \cr & \cr & {\text{Use the Endpaper Integral Table to evaluate the integral by the formula }} \cr & \int {u\sqrt {2au - {u^2}} du} = \frac{{2{u^2} - au - 3{a^2}}}{6}\sqrt {2au - {u^2}} + \frac{{{a^3}}}{2}{\sin ^{ - 1}}\left( {\frac{{u - a}}{a}} \right) + C \cr & {\text{we have }}u - {u^2} = 2au - {u^2},{\text{ then }}u = 2au,\,\,\,a = 1/2 \cr & \int {u\sqrt {u - {u^2}} } du = \frac{{2{u^2} - \left( {1/2} \right)u - 3{{\left( {1/2} \right)}^2}}}{6}\sqrt {u - {u^2}} + \frac{{{{\left( {1/2} \right)}^3}}}{2}{\sin ^{ - 1}}\left( {\frac{{u - 1/2}}{{1/2}}} \right) + C \cr & {\text{simplifying}} \cr & \int {u\sqrt {u - {u^2}} } du = \frac{{2{u^2} - \left( {1/2} \right)u - 3/4}}{6}\sqrt {u - {u^2}} + \frac{1}{{16}}{\sin ^{ - 1}}\left( {2u - 1} \right) + C \cr & \cr & {\text{Write in terms of }}x{\text{, and replace }}x{\text{ for }}u \cr & \int {x\sqrt {x - {x^2}} } dx = \frac{{2{x^2} - \left( {1/2} \right)x - 3/4}}{6}\sqrt {x - {x^2}} + \frac{1}{{16}}{\sin ^{ - 1}}\left( {2x - 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.