Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - Chapter 7 Review Exercises - Page 558: 23

Answer

$$\ln \left| {x + \sqrt {{x^2} - 1} } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {{x^2} - 1} }}} \cr & {\text{Substitute }}x = \sec \theta ,{\text{ }}dx = \sec \theta \tan \theta d\theta \cr & {\text{Use the trigonometric substitution}} \cr & \int {\frac{{dx}}{{\sqrt {{x^2} - 1} }}} = \int {\frac{{\sec \theta \tan \theta }}{{\sqrt {{{\left( {\sec \theta } \right)}^2} - 1} }}} d\theta \cr & {\text{Simplify}} \cr & = \int {\frac{{\sec \theta \tan \theta }}{{\sqrt {{{\sec }^2}\theta - 1} }}} d\theta \cr & {\text{Where se}}{{\text{c}}^2}\theta - 1 = {\tan ^2}\theta \cr & = \int {\frac{{\sec \theta \tan \theta }}{{\sqrt {{{\tan }^2}\theta } }}} d\theta \cr & = \int {\frac{{\sec \theta \tan \theta }}{{\tan \theta }}} d\theta \cr & = \int {\sec \theta } d\theta \cr & {\text{Integrate by the formula }}\int {\sec x} dx = \ln \left| {\sec x + \tan x} \right| + C \cr & = \ln \left| {\sec \theta + \tan \theta } \right| + C \cr & {\text{Writing the answer in terms of }}x,{\text{ we have that }} \cr & x = \sec \theta ,\,\,\,\,\tan \theta = \sqrt {{x^2} - 1} \cr & {\text{Then}}{\text{,}} \cr & = \ln \left| {x + \sqrt {{x^2} - 1} } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.