Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 5 - Applications Of The Definite Integral In Geometry, Science, And Engineering - 5.2 Volumes By Slicing; Disks And Washers - Exercises Set 5.2 - Page 363: 43

Answer

$\text{(a) V = $\frac{2\pi}{3}$}$ $\text{(b) V = $\frac{16}{3}$}$ $\text{(c) V = $\frac{4\sqrt 3}{3}$}$

Work Step by Step

$\text{It is given that}$ \begin{align} x^2 + y^2 = 1 \end{align} $\text{(a) Semicircles}$ $\text{The cross section area:}$ \begin{align} & A(x) = \frac{1}{2} \pi r^2 \ \ where \ \ r = y = \sqrt {1-x^2} \\ & A(x) = \frac{1}{2} \pi (1-x^2) \end{align} $\text{Thus, the volume is}$ \begin{align} V = \int_{-1}^{1} \frac{1}{2} \pi (1-x^2) \ dx = \frac{1}{2} \pi \left[x-\frac{x^3}{3} \right]_{-1}^1 = \frac{1}{2} \pi \times \frac{4}{3} = \frac{2\pi}{3} \end{align} $\text{(b) Squares}$ $\text{The cross section area:}$ \begin{align} & A(x) = a^2 \ \ where \ \ a = 2y = 2 \sqrt {1-x^2} \\ & A(x) = 4(1-x^2) \end{align} $\text{Thus, the volume is}$ \begin{align} V = \int_{-1}^{1} 4(1-x^2) \ dx = 4 \left[x-\frac{x^3}{3} \right]_{-1}^1 = 4 \times \frac{4}{3} = \frac{16}{3} \end{align} $\text{(c) Equilateral triangles}$ $\text{The cross section area:}$ \begin{align} & A(x) = \frac{\sqrt 3}{4} a^2 \ \ where \ \ a = 2y = 2 \sqrt {1-x^2} \\ & A(x) = \sqrt 3 (1-x^2) \end{align} $\text{Thus, the volume is}$ \begin{align} V = \int_{-1}^{1} \sqrt 3 (1-x^2) \ dx = \sqrt 3 \left[x-\frac{x^3}{3} \right]_{-1}^1 = \sqrt 3 \times \frac{4}{3} = \frac{4\sqrt 3}{3} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.