Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 5 - Applications Of The Definite Integral In Geometry, Science, And Engineering - 5.2 Volumes By Slicing; Disks And Washers - Exercises Set 5.2 - Page 363: 37

Answer

$\text{The volume is}$ \begin{align} & V = \frac{\pi}{15} \end{align}

Work Step by Step

$\text{It is given that}$ \begin{align} y = x^2 \ and \ y = x^3; \end{align} $\text{The function revolves around x = 1. Thus,}$ \begin{align} y = x^2 \Rrightarrow x = \sqrt y \ and \ y = x^3 \Rrightarrow x = \sqrt[3] y \end{align} $\text{The intersections of two functions are}$ \begin{align} \sqrt y = \sqrt[3] y \Rrightarrow y = 0 \ and y = 1 \Rrightarrow x = 0 \ and \ x = 1 \end{align} $\text{The volume is}$ \begin{align} & V =\pi \int_0^1 \left((\sqrt y - 1 )^2 - (\sqrt[3] y - 1)^2 \right)dy = \pi \int_0^1 \left(y-2y^{\frac{1}{2}} -y^{\frac{2}{3}} +2y^{\frac{1}{3}} \right)dy = \\ & = \pi \left(\frac{1}{2} - \frac{4}{3} -\frac{3}{5} + \frac{3}{2} \right) = \frac{\pi}{15} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.