Answer
\begin{align}
b = \frac{2\pi}{6+\pi}
\end{align}
Work Step by Step
$\text{It is given that}$
\begin{align}
y \frac{1}{x}; y = 0; x =2 \ and \ x = b \ (0 \leq b \leq 2)
\end{align}
$\text{We have to find b, so that the volume of the solid is 3. Therefore:}$
\begin{align}
V = \int_b^2 \pi \frac{1}{x^2} \ dx = \pi \times \left[-\frac{1}{x} \right]_b^2 = \pi \times \left(\frac{1}{b} - \frac{1}{2} \right) = 3 \Rrightarrow b = \frac{2\pi}{6+\pi}
\end{align}