Answer
$\text{The volume is}$
\begin{align}
V = \frac{648\pi}{5}
\end{align}
Work Step by Step
$\text{It is given that}$
\begin{align}
y = \sqrt x; y = 0; x = 9
\end{align}
$\text{The function revolves around x = 9. Thus,}$
\begin{align}
y = \sqrt x \Rrightarrow f(y) = x = y^2
\end{align}
$\text{The volume is}$
\begin{align}
& V = \int_0^3 \pi (f(y) - 9)^2 \ dy = \int_0^3 \pi (y^2 - 9)^2 \ dy = \int_0^3 \pi (y^4-18y^2+81) \ dy = \\
& = \pi \left(\frac{y^5}{5} -6y^3+81 \right)_0^3 = \frac{648\pi}{5}
\end{align}