Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 5 - Applications Of The Definite Integral In Geometry, Science, And Engineering - 5.2 Volumes By Slicing; Disks And Washers - Exercises Set 5.2 - Page 363: 38

Answer

$\text{The volume is}$ \begin{align} & V = \frac{47\pi}{210} \end{align}

Work Step by Step

$\text{It is given that}$ \begin{align} y = x^2 \ and \ y = x^3; \end{align} $\text{The function revolves around y = -1.}$ $\text{The intersections of two functions are}$ \begin{align} x^2 = x^3 \Rrightarrow x = 0 \ and x = 1 \Rrightarrow y= 0 \ and \ y = 1 \end{align} $\text{The volume is}$ \begin{align} & V =\pi \int_0^1 \left((x^2+1)^2-(x^3+1)^2 \right)dx =\\ & = \pi \int_0^1(x^4+2x^2-x^6-2x^3)dx = \\ & = \pi \times \left[\frac{x^5}{5} +\frac{2x^3}{3} - \frac{x^7}{7} -\frac{x^4}{2} \right]_0^1 = \pi \left(\frac{1}{5} +\frac{2}{3} - \frac{1}{7} -\frac{1}{2} \right) = \frac{47\pi}{210} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.