Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.8 Related Rates - Exercises Set 2.8 - Page 175: 47

Answer

$\frac{20}{9 \pi} $ cm/s

Work Step by Step

Ref to the figure $AB=4 $cm= Upper radius of the cup $FD= 2$ cm =Lower radius of the cup $BD=6$ cm = Height of the cup $CD=3 $ cm= Coffee level of the cup $DE=(h-6)$ cm = Height of the cone that had been cut to form existing shape of the cup. In the right-angled triangle $ABE$ $\frac{BE}{AB}=\frac{h}{4}=\frac{DE}{FD}=\frac{h-6}{2}$Or $\frac{h}{4}=\frac{h-6}{2}$ Or $2h=4h-24$Or $2h-4h=-24$ Or $-2h=-24$Or $h=\frac{-24}{-2}=12$cm at $r=4$cm $\Longrightarrow$ $\frac{BE}{AB}=\frac{h}{r}=\frac{12}{4}=3$Or $\frac{h}{r}=3$ $\Longrightarrow$ $h=3r$ Or $r=\frac{h}{3}$ ..................... eq (1) Let $V$ be the volume of the cone. Then $V=\frac{1}{3} \pi r^2 h $ ............... eq (2) Putting equation (1) in equation (2) $V=\frac{1}{3} \pi (\frac{h}{3})^2 \times h= \frac{h^3 \pi}{27} $ Taking derivative with respect to time t $\frac{dV}{dt}=\frac{ d ( \frac{h^3 \pi}{27} )}{dt}= \frac{ \pi}{27} \frac{d(h^3)}{dt}=\frac{\pi}{27}\frac{d(h^3)}{dh} \frac{dh}{dt}= \frac{3h^2\pi}{27}\frac{dh}{dt}= \frac{h^2\pi}{9} \frac{dh}{dt}$ .............. eq(3) Also from fig $CE=CD+DE=3+h-6=h-3$ Putting $h=12 \Longrightarrow$ $CE= 12-3=9$ =level of rising coffee level=h Putting $ \frac{dV}{dt}=20 cm^3/s$ and $h=9$ in equation (3) $ 20= \frac{9^2 \pi}{9}\frac{dh}{dt}= 9\pi\frac{dh}{dt}$ $ \Longrightarrow\frac{dh}{dt}=\frac{20}{9\pi}$ cm/s
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.