Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.8 Related Rates - Exercises Set 2.8 - Page 175: 40

Answer

(a) $3$ (b) $-\frac{5}{2\sqrt 3}$

Work Step by Step

Coordinate of the point $P$ are $ (x, \sqrt x) $ moving along the curve $y=\sqrt x$ Let $L$ be the given point with coordinate $ L (2,0) $. Let $z$ be the distance from the point $P$ to the point $L$ $z=\sqrt {(x-2) ^2+(\sqrt x-0)^2} $ Or $z=\sqrt {x^2-4x+4+x} $ $z=\sqrt {x^2-3x+4} $ Taking derivatives with respect to t $\frac{dz}{dt}=\frac{d( \sqrt { x^2-3x+4})}{dt}$ $\frac{dz}{dt}=[\frac{d( \sqrt { x^2-3x+4})}{dx}] \frac{dx}{dt}$ $\frac{dz}{dt}=[\frac{1}{2} (x^2-3x+4)^{\frac{1}{2}-1} \frac{d(x^2-3x+4)}{dx}] \frac{dx}{dt}$ $\frac{dz}{dt}=[\frac{1}{2} (x^2-3x+4)^{-\frac{1}{2}} \frac{d(x^2-3x+4)}{dx} ]\frac{dx}{dt}$ $\frac{dz}{dt}=\frac{1}{2}\frac{2x-3}{\sqrt { x^2-3x+4}} \frac{dx}{dt}$ Put $x=3$ ,$\frac{dx}{dt}=4$ units /s (a)$\frac{dz}{dt}=\frac{1} {2} \frac {2 \times 3-3}{\sqrt { 3^2-3 \times 3+4}} \times 4=3$ (b) From coordinates of points $ P (x, \sqrt x) $ and $L(2,0) $ slope of $PL=\frac{\sqrt x-0}{x-2}=\frac{\sqrt x}{x-2}$ If $\alpha$ is the inclination of $LP$, then $\tan\alpha=\frac{\sqrt x}{x-2}$ Taking derivative with respect to t $ \frac{d(\tan\alpha)}{dt}= \frac{ d(\frac{\sqrt x}{x-2})}{dt}$ $ \frac{d(\tan\alpha)}{d\alpha} \frac{ d\alpha}{dt}= \frac{ d(\frac{\sqrt x}{x-2})}{dx} \frac{dx}{dt}$ $\sec^2\alpha \frac{d\alpha}{dt}= \frac{(x-2) d\frac{( \sqrt x)}{dx}- \sqrt x \frac{d(x-2)}{dx}}{(x-2)^2} \frac{dx}{dt}$ $(1+\tan^2\alpha) \frac{d\alpha}{dt}= \frac{(x-2) \frac{1}{2} x^{- \frac{1}{2}}- \sqrt x }{(x-2)^2} \frac{dx}{dt}$ $(1+\tan^2\alpha) \frac{d\alpha}{dt}= \frac{ \frac{x-2}{2\sqrt x }-\sqrt x }{(x-2)^2} \frac{dx}{dt}$ $[1+ (\frac{\sqrt x}{x-2})^2] \frac{d\alpha}{dt}= \frac{ \frac{x-2}{2\sqrt x }-\sqrt x }{(x-2)^2} \frac{dx}{dt}$ ............................... eq(1) Putting $x=3,\frac{dx}{dt}=4$ units/s in equation (1) $[1+ (\frac{\sqrt 3}{3-2})^2] \frac{d\alpha}{dt}= \frac{ \frac{3-2}{2\sqrt 3 }-\sqrt 3 }{(3-2)^2} \times 4 $ $ \frac{d\alpha}{dt} =-\frac{5}{2\sqrt 3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.