Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.8 Related Rates - Exercises Set 2.8 - Page 175: 41

Answer

$+\sqrt { \frac{{ -5+\sqrt 33 }}{2}} $ $-\sqrt { \frac{{ -5+\sqrt 33 }}{2}} $

Work Step by Step

$y=\frac{x}{x^2+1}$ $ \frac{dy}{dt}=\frac {d (\frac{x}{x^2+1})} {dt}$ $ \frac{dy}{dt}=\frac {d (\frac{x}{x^2+1})} {dx} \frac{dx}{dt}$ $ \frac{dy}{dt}=\frac{(x^2+1) \frac{dx}{dx}-x\frac{d(x^2+1)} {dx}} {(x^2+1)^2} \frac{dx}{dt}$ $ \frac{dy}{dt}=\frac{(x^2+1) -2x^2} {(x^2+1)^2} \frac{dx}{dt}$ $ \frac{dy}{dt}=\frac {1 -x^2} {(x^2+1)^2} \frac{dx}{dt}$ ............... eq (1) Putting $\frac{dx}{dt} =3\times \frac{dy}{dt}$ in equation (1) $ \frac{dy}{dt}=\frac {1 -x^2} {(x^2+1)^2} \times 3 \times \frac{dy}{dt}$ $ \frac {1}{3} =\frac {1 -x^2} {(x^2+1)^2} $ $ (x^2+1)^2=3 \times (1 -x^2)=3-3x^2 $ $x^4+2x^2+1+3x^2=3$ $x^4+5x^2-2=0$ Using quadratic formula $x^2=\frac{-5+\sqrt 33}{2}$ Or $x^2=\frac{-5-\sqrt 33}{2}$ Or $ x=\sqrt { \frac{-5+\sqrt 33}{2} } $ Or $ x=\sqrt { \frac{-5-\sqrt 33}{2} } $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.