Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.8 Related Rates - Exercises Set 2.8 - Page 175: 42

Answer

$ \left(\mp\frac{9}{5}, \pm\frac{16}{5}\right)$

Work Step by Step

$16x^2+9y^2=144$ ................... eq (1) Taking derivative with respect to t $\frac{d(16x^2+9y^2) }{dt}=\frac{d(144)}{dt}$ $\frac{d(16x^2+9y^2) }{dx} \frac{dx}{dt}=0$ $\frac{d(16x^2+9y^2) }{dx} \frac{dx}{dt} +\frac{d(16x^2+9y^2) }{dy} \frac{dy}{dt}==0$ $32x \frac{dx}{dt} +18y \frac{dy}{dt}=0$ $32x \frac{dx}{dt} =-18y \frac{dy}{dt}$ ................ eq (2) Since $\frac{dx}{dt}=\frac{dy}{dt}$ ............................ eq (3) From equation (2) and equation (3) $\frac{x}{y}=-\frac{18}{32} =-\frac{9}{16} $ $x =-\frac{9}{16} y $ .................. eq (4) Putting equation (4) in equation (1) $16 ( -\frac{9}{16}y)^2+9y^2=144$ $ 16(\frac{81y^2}{256})+9y^2=144$ $ \frac{225}{16}y^2=144$ $ y^2=144\times \frac{16}{225}=\frac{256}{25} $ $y=\pm\frac{16}{5}$ ,,,,,,,,,,,,,,,,,, eq (5) Putting equation (5) in equation (4) $x=-\frac{9}{16}\times \pm\frac{16}{5}=\mp \frac{9}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.