Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.8 Related Rates - Exercises Set 2.8 - Page 175: 39

Answer

$-4$ units per second

Work Step by Step

Given point $P(x,y)=P(x,2x) $ moves along the line $y=2x$ Let $ L$ be the given fixed-point $L (3,0) $ Let distance from the point $P (x,2x)$ to $L (3,0)$ be $z$. The $z=\sqrt {(x-3) ^2+(2x-0)^2} $ $z=\sqrt {x^2-6x+9+4x^2} =\sqrt {5x^2-6x+9} $ Taking derivatives with respect to t $\frac{dz}{dt}=\frac{d\sqrt {5x^2-6x+9}}{dt}$ Applying chain rule $\frac{dz}{dt}=\frac{d\sqrt {5x^2-6x+9}}{dx} \frac{dx}{dt}$ $\frac{dz}{dx}= \frac{1}{2}[ {5x^2-6x+9}]^{-\frac{1}{2}} \frac{d(5x^2-6x+9)}{dx} \frac{dx}{dt}$ $ \frac{dz}{dx}=\frac{1}{2}\frac{10x-6}{\sqrt {5x^2-6x+9}} \frac{dz}{dx}$ ............. eq(1) Putting $ x=3$ and $\frac{dx}{dt}=-2$ units/s in equation (1) $ \frac{dz}{dx}=\frac{1}{2}\frac{10\times3-6} {\sqrt {5\times3^2-6\times3+9}} \times -2=-4$ units per second
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.