Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.1 Vector Fields - Exercises Set 15.1 - Page 1092: 23

Answer

$4x$

Work Step by Step

We find: $\textbf{F}\times\textbf{G}=\begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\2x&1&4y\\x&y&-z\end{vmatrix}$ $=\textbf{i}(-z-4y^{2})-\textbf{j}(-2xz-4yx)+\textbf{k}(2xy-x)$ $=(-4y^{2}-z)\textbf{i}+(2xz+4yx)\textbf{j}+(2xy-x)\textbf{k}$ $\nabla\cdot \textbf{F}=\nabla\cdot\langle -4y^{2}-z,2xz+4yx,2xy-x\rangle$ $=\frac{\partial}{\partial x}(-4y^{2}-z)+\frac{\partial}{\partial y}(2xz+4yx)+\frac{\partial}{\partial z}(2xy-x)$ $=0+4x+0=4x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.