Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.1 Vector Fields - Exercises Set 15.1 - Page 1092: 16

Answer

Answer (a): $\vec{F}$ is conservative for all $x$, $y$. Answer(b): $\vec{F}$ is conservative for all $x$, $y$ and $z$

Work Step by Step

Answer of part (a) \begin{equation} \phi = 2 y ^ { 2 } + 3 x ^ { 2 } y - x y ^ { 3 } \end{equation} \begin{equation} \nabla \phi = \phi _ {x } i + \phi _ { y } j = \left( 6 x y - y ^ { 3 } \right)i + \left( 4 y + 3 x ^ { 2 } - 3 x y ^ { 2 } \right) j = F \end{equation} \begin{equation} where: \quad \phi _ { x } = \frac { \partial \phi } { \partial x }, \quad \phi _ { y } = \frac { \partial \phi } { \partial y } \end{equation} Therefore, $\vec{F}$ is conservative for all $x$, $y$. Answer of part (b) \begin{equation} \phi = x \sin z + y \sin x + z \sin y \end{equation} \begin{equation} \nabla \phi = \phi _ { x } i + \phi _ { y } j + \phi _ { z } k \end{equation} \begin{equation} \phi _ {x } = \frac { \partial \phi } { \partial x} = \sin z + y \cos x \end{equation} \begin{equation} \phi _ { y } = \frac { \partial \phi } { \partial y } = \sin x + 2 \cos y \end{equation} \begin{equation} \phi _ { z } = \frac { \partial \phi } { \partial z } = x \cos z + \sin y \end{equation} $\vec{\nabla}\phi = (\sin(z) + y\cos(x))\mathbf{i} + (\sin(x) + z\cos(y))\mathbf{j} + (x\cos(z) + \sin(y))\mathbf{k} - \mathbf{F}$ Therefore, $\vec{F}$ is conservative for all $x$, $y$ and $z$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.