Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.1 Vector Fields - Exercises Set 15.1 - Page 1092: 21

Answer

$\boxed{\text{div }\mathbf{F} = \frac{2}{\sqrt{x^2+y^2+z^2}}, \quad \text{curl }\mathbf{F} = \mathbf{0}}$

Work Step by Step

Let $\mathbf{F}(x,y,z) = \frac{x \mathbf{i} + y \mathbf{j} + z \mathbf{k}}{\sqrt{x^2+y^2+z^2}}.$ Divergence of $\mathbf{F}$ The divergence is defined as $\text{div }\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}.$ Here, $F_x = \frac{x}{\sqrt{x^2+y^2+z^2}},$ $F_y = \frac{y}{\sqrt{x^2+y^2+z^2}}, $ $F_z = \frac{z}{\sqrt{x^2+y^2+z^2}}.$ Compute the partial derivatives: $\frac{\partial F_x}{\partial x} = \frac{\partial}{\partial x} \left( \frac{x}{\sqrt{x^2+y^2+z^2}} \right) = \frac{\sqrt{x^2+y^2+z^2} - \frac{x \cdot x}{\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} = \frac{y^2+z^2}{(x^2+y^2+z^2)^{3/2}}.$ Similarly, $\frac{\partial F_y}{\partial y} = \frac{x^2+z^2}{(x^2+y^2+z^2)^{3/2}}, \quad \frac{\partial F_z}{\partial z} = \frac{x^2+y^2}{(x^2+y^2+z^2)^{3/2}}.$ Thus, $\text{div }\mathbf{F} = \frac{y^2+z^2 + x^2+z^2 + x^2+y^2}{(x^2+y^2+z^2)^{3/2}} = \frac{2(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{3/2}} = \frac{2}{\sqrt{x^2+y^2+z^2}}.$ Curl of $ \mathbf{F}$ The curl is defined as $\text{curl }\mathbf{F} = \nabla \times \mathbf{F} =$ $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}.$ Since $F_x, F_y, F_z$ are proportional to $ x, y, z$ respectively, and the field is radial, $\text{curl }\mathbf{F} = \mathbf{0}.$ $\boxed{\text{div }\mathbf{F} = \frac{2}{\sqrt{x^2+y^2+z^2}}, \quad \text{curl }\mathbf{F} = \mathbf{0}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.