Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.1 Vector Fields - Exercises Set 15.1 - Page 1092: 22

Answer

$ \boxed{ \operatorname{div} \mathbf{F} = \frac{1}{x} + xz e^{xyz} + \frac{x}{x^2+z^2}, \quad \nabla \times \mathbf{F} = -xy e^{xyz} \,\mathbf{i} + \frac{z}{x^2+z^2} \,\mathbf{j} + yz e^{xyz} \,\mathbf{k} } $

Work Step by Step

Let $\mathbf{F}(x, y, z) = \ln x \,\mathbf{i} + e^{xyz} \,\mathbf{j} + \tan^{-1}\left(\frac{z}{x}\right) \,\mathbf{k}.$ Divergence of $\mathbf{F}$ The divergence is defined as $\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}.$ Here, $F_x = \ln x, \quad F_y = e^{xyz}, \quad F_z = \tan^{-1}\left(\frac{z}{x}\right).$ Compute each derivative: $\frac{\partial F_x}{\partial x} = \frac{d}{dx} (\ln x) = \frac{1}{x},$ $\frac{\partial F_y}{\partial y} = \frac{\partial}{\partial y} \left(e^{xyz}\right) = xz e^{xyz},$ $\frac{\partial F_z}{\partial z} = \frac{\partial}{\partial z} \left(\tan^{-1}\frac{z}{x}\right) = \frac{1}{1+(z/x)^2} \cdot \frac{1}{x} = \frac{x}{x^2+z^2}.$ Therefore, $\operatorname{div} \mathbf{F} = \frac{1}{x} + xz e^{xyz} + \frac{x}{x^2+z^2}.$ Curl of $\mathbf{F}$ The curl is defined as $\nabla \times \mathbf{F} =$ $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}.$ Compute each component: $(\nabla \times \mathbf{F})_x = \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0 - xy e^{xyz} = -xy e^{xyz},$ $(\nabla \times \mathbf{F})_y = \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0 - \frac{\partial}{\partial x} \left(\tan^{-1}\frac{z}{x}\right) = - \frac{-z/x^2}{1+(z/x)^2} = \frac{z}{x^2+z^2},$ $ (\nabla \times \mathbf{F})_z = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial}{\partial x} \left(e^{xyz}\right) - 0 = yz e^{xyz}.$ Thus, $\nabla \times \mathbf{F} = -xy e^{xyz} \,\mathbf{i} + \frac{z}{x^2+z^2} \,\mathbf{j} + yz e^{xyz} \,\mathbf{k}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.