Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.1 Vector Fields - Exercises Set 15.1 - Page 1092: 19

Answer

Divergence $F = 0$ Curl $F =( -12xy^3+40x^2z^4)i+(14y^3z+3y^4)j+(-16xz^5-21y^2z^2)k$

Work Step by Step

Consider the vector field: $F(x,y,z)=7y^3z^2i-8x^2z^5j-3xy^4k$ Let $F$ be the vector field: $F(x,y,z)=f(x,y,z)i+g(x,y,z)j+h(x,y,z)k$ $f(x,y,z) = 7y^3z^2$ $g(x,y,z) = -8x^2z^5$ $h(x,y,z) = -3xy^4$ Divergence: $$div F=\frac{∂f}{∂x}+\frac{∂g}{∂y}+\frac{∂h}{∂z}$$ div $F=\frac{∂(7y^3z^2)}{∂x}+\frac{∂(-8x^2z^5)}{∂y}+\frac{∂(-3xy^4)}{∂z}$ $=0+0+0$ div$F=0$ $$curl F=(\frac{∂h}{∂y}-\frac{∂g}{∂z})i+(\frac{∂f}{∂z}-\frac{∂h}{∂x})j+(\frac{∂g}{∂x}-\frac{∂f}{∂y})k$$ $=(-12xy^3+40x^2z^4)i+(14y^3z+3y^4)j+(-16xz^5-21y^2z^2)k$ $curlF=(-12xy^3+40x^2z^4)i+(14y^3z+3y^4)j+(-16xz^5-21y^2z^2)k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.