Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.6 Directional Derivatives And Gradients - Exercises Set 13.6 - Page 969: 63

Answer

Vector opposite the gradient: $\mathbf{V}=3 \mathbf{i}-\mathbf{j}$ Unit vector: $\mathbf{v}=\frac{1}{\sqrt{10}}(3 \mathbf{i}-\mathbf{j})$ Rate of change: $-\sqrt{5}=-\left\|\nabla f\left(\frac{\pi}{6}, \frac{\pi}{4}\right)\right\|$

Work Step by Step

$f$ increases more quickly in the positive direction of $\nabla f(x, y)$ \[ \begin{array}{l} -3 \sin (-y+3 x)=f_{x}(x, y) \\ f_{x}\left(\frac{\pi}{6}, \frac{\pi}{4}\right)=-\frac{3}{\sqrt{2}} \\ \sin 3 x-y=f_{y}(x, y) \\ \frac{1}{\sqrt{2}}=f_{y}\left(\frac{\pi}{6}, \frac{\pi}{4}\right) \end{array} \] $\nabla f\left(\frac{\pi}{6}, \frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}(-3 \mathbf{i}+\mathbf{j})$ Vector opposite the gradient: $\mathbf{V}=3 \mathbf{i}-\mathbf{j}$ Unit vector: $\mathbf{v}=\frac{1}{\sqrt{10}}(3 \mathbf{i}-\mathbf{j})$ Rate of change: $-\sqrt{5}=-\left\|\nabla f\left(\frac{\pi}{6}, \frac{\pi}{4}\right)\right\|$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.