Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.6 Directional Derivatives And Gradients - Exercises Set 13.6 - Page 969: 54

Answer

Vector along the gradient: $\mathbf{V}=12 \mathbf{i}-\mathbf{j}$ Unit vector: $\mathbf{v}=\frac{1}{\sqrt{145}}(12 \mathbf{i}-\mathbf{j})$ Rate of change: $\frac{\sqrt{145}}{4}=\|\nabla f(2,4)\|$

Work Step by Step

$f$ increases most rapidly in the positive direction of $\nabla f(x, y)$ \[ \begin{array}{c} 3=f_{x}(x, y) \\ 3=f_{x}(2,4) \\ -\frac{1}{y}=f_{y}(x, y) \\ -\frac{1}{4}=f_{y}(2,4) \\ \nabla f(2,4)=\frac{1}{4}(12 \mathbf{i}-\mathbf{j}) \end{array} \] Vector along the gradient: $\mathbf{V}=12 \mathbf{i}-\mathbf{j}$ Unit vector: $\mathbf{v}=\frac{1}{\sqrt{145}}(12 \mathbf{i}-\mathbf{j})$ Rate of change: $\frac{\sqrt{145}}{4}=\|\nabla f(2,4)\|$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.