Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.3 Partial Derivatives - Exercises Set 13.3 - Page 938: 71

Answer

$\frac{\partial z}{\partial y}=-\frac{z^{2}x \cos (x y z)}{\sin (x y z)+x y z \cos (x y z)}$ $\frac{\partial z}{\partial x}=-\frac{y z^{2} \cos (x y z)+2 x}{\sin (x y z)+x y z \cos (x y z)}$

Work Step by Step

We are given that $0=z \sin (x y z)+x^{2}$ Differentiating $\frac{\partial}{\partial x}\left(z \sin (x y z)+x^{2}\right)=\frac{d}{d x}(0)$ $0=\sin (x y z) \frac{\partial z}{\partial x}+2 x+z \cos (x y z) *\left(y z+x y \frac{\partial z}{\partial x}\right)$ $(\sin (x y z)+x y z \cos (x y z)) \frac{\partial z}{2}$ $\frac{\partial z}{\partial x}=-\frac{y z^{2} \cos (x y z)+2 x}{\sin (x y z)+x z z \cos (x z z)}$ Differentiating $\frac{\partial}{\partial y}\left(x^{2}+z \sin (x y z)\right)=\frac{d}{d y}(0)$ $\sin (x y z) \frac{\partial z}{\partial y}+z \cos (x y z) *\left(x z+x y \frac{\partial z}{\partial y}\right)=0$ $\frac{\partial z}{\partial y}{\sin (x y z)+x y z \cos (x y z)}=-{z^{2}x \cos (x y z)}$ $\frac{\partial z}{\partial y}=-\frac{z^{2}x \cos (x y z)}{\sin (x y z)+x y z \cos (x y z)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.