Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.3 Partial Derivatives - Exercises Set 13.3 - Page 938: 70

Answer

\[ \begin{array}{l} \frac{1}{3 z^{2}} =\frac{\partial z}{\partial y}\\ \frac{-2 x^{2}-y+z^{3}+4 x}{3 z^{2}} =\frac{\partial z}{\partial x} \end{array} \]

Work Step by Step

We are given that \[ X=\ln \left(-z^{3}+y+2 x^{2}\right) \] Differentiate the variable $ z $ in relation to $ x $ with $ y $ constant \[ \begin{aligned} \frac{\partial}{\partial x}\left(\ln \left(2 x^{2}+y-z^{3}\right)\right) &=\frac{d}{d x}(x) \\ 1=\frac{1}{-z^{3}+y+2 x^{2}} *\left(-3 z^{2} +4 x \frac{\partial z}{\partial x}\right) & \\ &-z^{3}+y+ 2 x^{2}=4 x-3 z^{2} \frac{\partial z}{\partial x} \\ &\frac{-2 x^{2}-y+z^{3}+4 x}{3 z^{2}}=\frac{\partial z}{\partial x} \end{aligned} \] Similarly, distinguishing between the variable variable $ z $ in relation to $ y $ with $ x $ as a constant \[ \begin{aligned} \frac{\partial}{\partial y}\left(\ln \left(2 x^{2}+y-z^{3}\right)\right) &=\frac{d}{d y}(x) \\ \frac{1}{2 x^{2}+y-z^{3}} *\left(1-3 z^{2} \frac{\partial z}{\partial y}\right) &=0 \\ 1-3 z^{2} \frac{\partial z}{\partial y} &=0 \\ \frac{1}{3 z^{2}}=\frac{\partial z}{\partial y} & \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.