Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.3 Partial Derivatives - Exercises Set 13.3 - Page 938: 61

Answer

\begin{aligned} \left.\frac{\partial P}{\partial T}\right|_{V=50)} &=0.2 \end{aligned} \begin{aligned} \left.\frac{\partial V}{\partial P}\right|_{(T=80, V=50)} &=-3.125 \end{aligned}

Work Step by Step

We are given that \[ \frac{k T}{V}=P \] where $\mathrm{k}$ is constant and equal to $10 ~ l b . i n / k$ Thus, we have to find the instantaneous rate of change of pressure for temperature at $T=80$, while Volume remains constantat 50 $in^{3}$ \[ \begin{aligned} &\frac{k T}{V} \frac{\partial}{\partial T}=\frac{\partial P}{\partial T} \\ & \frac{\partial}{\partial T}(T) \frac{k}{V}=\frac{\partial P}{\partial T} \\ \frac{\partial P}{\partial T} &=\frac{k}{V} \\ \left.\frac{\partial P}{\partial T}\right|_{(V=50)} &=\frac{10}{50} \\ \left.\frac{\partial P}{\partial T}\right|_{(V=50)} &=0.2 \end{aligned} \] $b$) Similarly, we should find the instantaneous rate of change of volume with respect to pressure at $50=V$ $in^{3}$ and $80 \mathrm{\ Kelvin}$. Temperature remains constant. \[ \begin{aligned} &\frac{k T}{P} \frac{\partial}{\partial P}=\frac{\partial V}{\partial P} \\ &k T \frac{\partial}{\partial T}\left(\frac{1}{P}\right) =\frac{\partial V}{\partial P} \\ \frac{\partial V}{\partial P} &=-\frac{k T}{P^{2}} \\ \frac{\partial V}{\partial P} &=-\frac{k T}{\left(\frac{k T}{V}\right)^{2}} \\ \frac{\partial V}{\partial P} &=-\frac{V^{2}}{k T} \\ \left.\frac{\partial V}{\partial P}\right|_{(T=80, V=50)} &=-\frac{(50)^{2}}{10 * 80} \\ \left.\frac{\partial V}{\partial P}\right|_{(T=80, V=50)} &=-3.125 \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.