Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.3 Partial Derivatives - Exercises Set 13.3 - Page 938: 67

Answer

\[ \left.(a) \frac{\partial z}{\partial x}\right|_{(x=3, z=\pm 2 \sqrt{6})}=\pm \frac{3}{2 \sqrt{6}} \]

Work Step by Step

We are given that \[ 1=x^{2}+y^{2}-z^{2} \] Differentiating the changing variable $z$ with respect to $x$ and taking $y$ as constant \[ \begin{aligned} \frac{\partial}{\partial x}\left(-z^{2}+y^{2}+x^{2}\right) &=\frac{d}{d x}(1) \\ 0=0+2 x-2 z \frac{\partial z}{\partial x} & \\ \frac{x}{z} =\frac{\partial z}{\partial x} & \\ \left.\frac{\partial z}{\partial x}\right|_{(x=3, z=\pm 2 \sqrt{6})} &=\pm \frac{3}{2 \sqrt{6}} \end{aligned} \] First, we have to get the value of z and then differentiate it \[ \begin{aligned} \because 1=-z^{2}+y^{2}+x^{2} & \\ \Rightarrow z &=\pm \sqrt{-1+y^{2}+x^{2}} \end{aligned} \] Differentiating the sides with respect to x with y constant \[ \begin{aligned} \frac{\partial z}{\partial x} &=\frac{\partial}{\partial x}(\pm \sqrt{x^{2}+y^{2}-1}) \frac{\partial z}{\partial x}=\frac{d}{d x}(\pm \sqrt{x^{2}+y^{2}-1}) \\ \frac{\partial z}{\partial x} &=\pm \frac{1}{2 \sqrt{x^{2}+y^{2}-1}} *(2 x) \\ \frac{\partial z}{\partial x} &=\pm \frac{x}{\sqrt{x^{2}+y^{2}-1}} \\ \left.\frac{\partial z}{\partial x}\right|_{(x=3, y=4)} &=\pm \frac{3}{\sqrt{3^{2}+4^{2}-1}} \\ \left.\frac{\partial z}{\partial x}\right|_{(x=3, y=4)} &=\pm \frac{3}{2 \sqrt{6}} \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.