Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.2 Computing Limits - Exercises Set 1.2 - Page 69: 7

Answer

$4$

Work Step by Step

$x^{4} - 1 = (x - 1)(x^3 + x^2 + x + 1)$ so: $$\frac{x^{4}-1}{x-1} = x^3 + x^2 + x + 1.$$ Now we have: $$\begin{aligned} \lim\limits_{x \to 1^{+}}\frac{x^{4}-1}{x-1}& = \lim\limits_{x \to 1^{+}}(x^3 + x^2 + x + 1)\\ & = 1^3 + 1^2 + 1 + 1 \\ &= 4. \end{aligned}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.