Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 522: 61

Answer

$\frac{{{x^2}}}{m}\cosh mx - \frac{{2x}}{{{m^2}}}\sinh mx + \frac{2}{{{m^3}}}\cosh mx + C$

Work Step by Step

$$\eqalign{ & \int {{x^2}\sinh mx} dx \cr & {\text{Integrating by parts}} \cr & {\text{Let }}u = {x^2},{\text{ }}du = 2xdx \cr & dv = \sinh mx,{\text{ }}v = \frac{1}{m}\cosh mx \cr & {\text{Using the integration by parts formula}} \cr & \int {{x^2}\sinh mx} dx ={x^2}\left( {\frac{1}{m}\cosh mx} \right) - \int {\left( { \frac{1}{m}\cosh mx} \right)\left( {2x} \right)dx} \cr & \int {{x^2}\sinh mx} dx = {x^2}\left( {\frac{1}{m}\cosh mx} \right) - \frac{2}{m}\int {x\cosh mxdx} \cr & {\text{Integrating by parts }}x\cosh mx \cr & {\text{Let }}u = x,{\text{ }}du = dx \cr & dv = \cosh mx,{\text{ }}v = \frac{1}{m}\sinh mx \cr & \int {{x^2}\sinh mx} dx = \frac{{{x^2}}}{m}\cosh mx - \frac{{2x}}{{{m^2}}}\sinh mx + \frac{2}{{{m^2}}}\int {\sinh mxdx} \cr & {\text{Integrating}} \cr & = \frac{{{x^2}}}{m}\cosh mx - \frac{{2x}}{{{m^2}}}\sinh mx + \frac{2}{{{m^2}}}\left( { \frac{1}{m}\cosh mx} \right) + C \cr & = \frac{{{x^2}}}{m}\cosh mx - \frac{{2x}}{{{m^2}}}\sinh mx + \frac{2}{{{m^3}}}\cosh mx + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.