Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 522: 53

Answer

$\frac{2}{3}(1+\sqrt{x})^3-3(1+\sqrt{x})^2+6(1+\sqrt{x})-2\ln (1+\sqrt{x})+C$

Work Step by Step

$\int \frac{x}{1+\sqrt{x}}dx$ Let $u=1+\sqrt{x}$. Then, $x=(u-1)^2$ and $du=\frac{1}{2\sqrt{x}}dx$ $du=\frac{1}{2(u-1)}dx$ $dx={2(u-1)}\cdot du$ Using the $u-$substitution method, $\int \frac{x}{1+\sqrt{x}}dx=\int \frac{(u-1)^2}{u}\cdot 2(u-1) \cdot du$ $=\int \frac{2(u-1)^3}{u} du$ $=\int \frac{2u^3-6u^2+6u-2}{u}du$ $=\int 2u^2-6u+6-\frac{2}{u}\ du$ $=\frac{2}{3}u^3-3u^2+6u-2\ln u+C$ (Back substitute $u=1+\sqrt{x}$ $=\frac{2}{3}(1+\sqrt{x})^3-3(1+\sqrt{x})^2+6(1+\sqrt{x})-2\ln (1+\sqrt{x})+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.