Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 522: 21

Answer

$ - \frac{{{{\cos }^4}x}}{4} + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{{{\cos }^3}x}}{{\csc x}}} dx \cr & {\text{Use the reciprocal identity }}\csc x = \frac{1}{{\sin x}} \cr & \int {\frac{{{{\cos }^3}x}}{{\csc x}}} dx = \int {\frac{{{{\cos }^3}x}}{{\left( {1/\sin x} \right)}}} dx \cr & = \int {{{\cos }^3}x\sin x} dx \cr & {\text{Use the substitution method}} \cr & {\text{Let }}u = \cos x,{\text{ }}du = - \sin xdx \cr & {\text{Substituting}} \cr & \int {{{\cos }^3}x\sin x} dx = \int {{u^3}} \left( { - 1} \right)du \cr & = - \int {{u^3}} du \cr & {\text{Integrate apply the power rule }}\int {{u^n}du} = \frac{{{u^{n + 1}}}}{{n + 1}}{\text{ + C }} \cr & = - \frac{{{u^4}}}{4} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}\cos x{\text{ for }}u \cr & = - \frac{{{{\cos }^4}x}}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.