Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 522: 15

Answer

$\frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{{x^2}}}{3}} \right) + C$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{{x^4} + 9}}} dx \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{x}{{{x^4} + 9}}} dx = \int {\frac{x}{{{{\left( {{x^2}} \right)}^2} + 9}}} dx \cr & {\text{Let }}t = {x^2},{\text{ }}dt = 2xdx \cr & {\text{Substituting}} \cr & \int {\frac{x}{{{{\left( {{x^2}} \right)}^2} + 9}}} dx = \int {\frac{{\left( {1/2} \right)}}{{{t^2} + 9}}} dt \cr & = \frac{1}{2}\int {\frac{1}{{{t^2} + 9}}} dt \cr & {\text{Use the formula }}\int {\frac{1}{{{u^2} + {a^2}}}du = } \frac{1}{a}{\tan ^{ - 1}}\left( {\frac{u}{a}} \right) + C \cr & = \frac{1}{2}\left( {\frac{1}{3}{{\tan }^{ - 1}}\left( {\frac{t}{3}} \right)} \right) + C \cr & = t\ln t - \int {dt} \cr & = \frac{1}{6}{\tan ^{ - 1}}\left( {\frac{t}{3}} \right) + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}{x^2}{\text{ for }}t \cr & = \frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{{x^2}}}{3}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.