Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 522: 51

Answer

$\frac{2}{3}{\tan ^{ - 1}}\left( {{x^{3/2}}} \right) + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt x }}{{1 + {x^3}}}} dx \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{{\sqrt x }}{{1 + {x^3}}}} dx = \int {\frac{{{x^{1/2}}}}{{1 + {{\left( {{x^{3/2}}} \right)}^2}}}} dx \cr & {\text{Let }}u = {x^{3/2}} \to du = \frac{3}{2}{x^{1/2}}dx,{\text{ }}\frac{2}{3}du = {x^{1/2}}dx \cr & {\text{Substituting}} \cr & \int {\frac{{{x^{1/2}}}}{{1 + {{\left( {{x^{3/2}}} \right)}^2}}}} dx = \int {\frac{{\left( {2/3} \right)du}}{{1 + {{\left( u \right)}^2}}}} \cr & = \frac{2}{3}\int {\frac{{du}}{{1 + {u^2}}}} \cr & {\text{Integrating}} \cr & = \frac{2}{3}{\tan ^{ - 1}}u + C \cr & {\text{Write in terms of }}x,{\text{ }}u = {x^{3/2}} \cr & = \frac{2}{3}{\tan ^{ - 1}}\left( {{x^{3/2}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.